Comparative study of the skin penetration of protein transduction domains and a conjugated peptide

Pharm Res. 2005 May;22(5):750-7. doi: 10.1007/s11095-005-2591-x. Epub 2005 May 17.

Abstract

Purpose: We examined the ability of a protein transduction domain (PTD), YARA, to penetrate in the skin and carry a conjugated peptide, P20. The results with YARA were compared to those of a well-known PTD (TAT) and a control, nontransducing peptide (YKAc). The combined action of PTDs and lipid penetration enhancers was also tested.

Methods: YARA, TAT, YKAc, P20, YARA-P20, and TAT-P20 were synthesized by Fmoc chemistry. Porcine ear skin mounted in a Franz diffusion cell was used to assess the topical and transdermal delivery of fluorescently tagged peptides in the presence or absence of lipid penetration enhancers (monoolein or oleic acid). The peptide concentrations in the skin (topical delivery) and receptor phase (transdermal delivery) were assessed by spectrofluorimetry. Fluorescence microscopy was used to visualize the peptides in different skin layers.

Results: YARA and TAT, but not YKAc, penetrated abundantly in the skin and permeated modestly across this tissue. Monoolein and oleic acid did not enhance the topical and transdermal delivery of TAT or YARA but increased the topical delivery of YKAc. Importantly, YARA and TAT carried a conjugated peptide, P20, into the skin, but the transdermal delivery was very small. Fluorescence microscopy confirmed that free and conjugated PTDs reached viable layers of the skin.

Conclusions: YARA and TAT penetrate in the porcine ear skin in vitro and carry a conjugated model peptide, P20, with them. Thus, the use of PTDs can be a useful strategy to increase topical delivery of peptides for treatment of cutaneous diseases.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Administration, Cutaneous
  • Animals
  • Drug Evaluation, Preclinical / methods
  • Ear / pathology
  • Fluorescein-5-isothiocyanate / analogs & derivatives
  • Fluorescein-5-isothiocyanate / chemistry
  • Fluorescein-5-isothiocyanate / pharmacology
  • Microscopy, Fluorescence / methods
  • Peptides / chemical synthesis*
  • Peptides / metabolism
  • Peptides / pharmacology*
  • Protein Transport / drug effects
  • Protein Transport / physiology*
  • Skin / drug effects
  • Skin / metabolism
  • Skin / ultrastructure
  • Skin Absorption / drug effects
  • Skin Absorption / physiology*
  • Surface-Active Agents / chemistry
  • Surface-Active Agents / pharmacology
  • Swine
  • Technology, Pharmaceutical / methods

Substances

  • Peptides
  • Surface-Active Agents
  • Fluorescein-5-isothiocyanate