This study investigates the separation of two types of marrow stromal cells, KUSA-A1 osteoblasts and H-1/A preadipocytes, by filtration through various porous polymeric membranes. It was found that KUSA-A1 permeates better than H-1/A cells through 12-microm polyurethane foaming membranes. This appears to be due to the relatively smaller cell size of KUSA-A1 cells. In addition, when feed solutions containing suspensions of either cell type or a mixture of the two were used, the permeation ratio was relatively low (< 6%) through polyurethane and surface-modified polyurethane foaming membranes. It was also found that there was some degree of separation between KUSA-A1 and H-1/A cells (separation factor = 1.8) with nylon-net filter membranes, but no separation was obtained when filters made of nonwoven fabrics or silk screens were used. This ability of the nylon-net filter membranes to separate the two cell types was due to a sieving effect that results from an optimal pore size. Finally, permeation of a solution of human serum albumin through the membrane following filtration of the cells did not result in a separation of cells in the recovery solution.
Copyright 2005 Wiley Periodicals, Inc.