Gamma interferon enhances internalization and early nonoxidative killing of Salmonella enterica serovar Typhimurium by human macrophages and modifies cytokine responses

Infect Immun. 2005 Jun;73(6):3445-52. doi: 10.1128/IAI.73.6.3445-3452.2005.

Abstract

Gamma interferon (IFN-gamma) is a critical cytokine in host defense against salmonella infections, but its role in phagocytic killing of intracellular Salmonella spp. has been investigated mainly in animal rather than human cells. We measured the effect of recombinant IFN-gamma (rIFN-gamma) priming on bacterial internalization, intracellular killing, oxidative burst, and cytokine release during phagocytosis of Salmonella enterica serovar Typhimurium by human monocyte-derived macrophages (MDM). Eleven-day-old MDM, primed for 72 h with rIFN-gamma (100 ng/ml) exhibited an increased proportion of cells with associated bacteria (31% versus 26%, P = 0.036) and a 67% increase in internalized bacteria per cell compared to unprimed cells (P = 0.025). Retrieval of viable bacteria following internalization was reduced 3.6-fold in 72-h primed versus unprimed MDM (interquartile range, 3.1 to 6.4) at 0.5 h due to enhanced early intracellular killing, and this difference was maintained up to 24 h. In contrast, cells primed for only 24 h exhibited no increase in early killing. MDM were competent to produce an early oxidative burst when stimulated with phorbol myristate acetate, which was fully abrogated by the respiratory burst inhibitor diphenyleneiodonium chloride (DPI), but infection of MDM with S. enterica serovar Typhimurium did not cause an increase in the early respiratory burst under unprimed or primed conditions, and DPI had no effect on the early killing of bacteria by primed or unprimed MDM. During 24 h following infection, rIFN-gamma-primed MDM released more interleukin-12 (IL-12) and less IL-10 relative to unprimed cells. We conclude that 72-h priming with rIFN-gamma increases the efficiency of internalization and nonoxidative early intracellular killing of S. enterica serovar Typhimurium by human macrophages and modifies subsequent cytokine release.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Cytokines / biosynthesis*
  • Humans
  • Interferon-gamma / pharmacology*
  • Interleukin-10 / biosynthesis
  • Interleukin-12 / biosynthesis
  • Macrophages / immunology*
  • Middle Aged
  • Recombinant Proteins
  • Salmonella typhimurium / drug effects
  • Salmonella typhimurium / immunology*

Substances

  • Cytokines
  • Recombinant Proteins
  • Interleukin-10
  • Interleukin-12
  • Interferon-gamma