Activation of cardiac muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) by beta1-agonists involves cAMP- and PKA-dependent phosphorylation of phospholamban (PLB), which relieves the inhibitory effects of PLB on SERCA2a. To investigate the mechanism of SERCA2a activation, we compared the kinetic properties of SERCA2a expressed with (+) and without (-) PLB in High Five insect cell microsomes to those of SERCA1 and SERCA2a in native skeletal and cardiac muscle SR. Both native SERCA1 and expressed SERCA2a without PLB exhibited high-affinity (10-50 microM) activation of pre-steady-state catalytic site dephosphorylation by ATP, steady-state accumulation of the ADP-sensitive phosphoenzyme (E1P), and a rapid phase of EGTA-induced phosphoenzyme (E2P) hydrolysis. In contrast, SERCA2a in native cardiac SR vesicles and expressed SERCA2a with PLB lacked the high-affinity activation by ATP and the rapid phase of E2P hydrolysis, and exhibited low steady-state levels of E1P. The results indicate that the kinetic differences in Ca2+ transport between skeletal and cardiac SR are due to the presence of phospholamban in cardiac SR, and not due to isoform-dependent differences between SERCA1 and SERCA2a. Therefore, the results are discussed in terms of a model in which PLB interferes with SERCA2a oligomeric interactions, which are important for the mechanism of Ca2+ transport in skeletal muscle SERCA1 [Mahaney, J. E., Thomas, D. D., and Froehlich, J. P. (2004) Biochemistry 43, 4400-4416]. We propose that intermolecular coupling of SERCA2a molecules during catalytic cycling is obligatory for the changes in Ca2+ transport activity that accompany the relief of PLB inhibition of the cardiac SR Ca2+-ATPase.