Cortical formation in the developing brain is a highly complicated process involving neuronal production (through symmetric or asymmetric cell division) interaction of radial glia with neuronal migration, and multiple modes of neuronal migration. It has been convincingly demonstrated by numerous studies that radial glial cells are neural stem cells. However, the processes by which neurons arise from radial glia and migrate to their final destinations in vivo are not yet fully understood. Recent studies using time-lapse imaging of neuronal migration are giving investigators an increasingly more detailed understanding of the mitotic behavior of radial glia and the migrating behavior of their daughter cells. In this review, we describe recent progress in elucidating neuronal migration in brain formation and how neuronal migration is disturbed by mutations in genes that control this process.