Diacylglycerol (DAG) was discovered as a potent lipid second messenger with protein kinase C (PKC) as its major cellular target more than 25 years ago. There is increasing evidence of significant complexity within lipid signaling, and the classical DAG-PKC model no longer stands alone but is part of a larger bioactive lipid universe involving glycerolipids and sphingolipids. Multiple layers of regulation exist among PKC- and DAG-metabolizing enzymes such as phosphatidylcholine (PC)-specific phospholipase D, and cross-talk exists between the glycerolipid and sphingolipid pathways, with PKC at the center. Currently, there is intense interest in the question of whether DAG derived from PC can function as a lipid second messenger and regulate PKC analogous to DAG derived from phosphatidylinositol-4,5-bisphosphate (PIP2). To address these issues and incorporate DAG-PKC and other signaling pathways into an expanded view of cell biology, it will be necessary to go beyond the classical approaches and concepts.