The postnatal development of nociceptive afferent activity expansion and its modulation features were examined in mice using an optical imaging technique. Developing mice (1-2 weeks old (N1-2 w), 3-4 weeks old (N3-4 w), 5-6 weeks old (N5-6 w) and 7-8 weeks old (N7-8 w)) and neonatally capsaicin-treated mice were used. The propagation of neuronal excitation was measured by changes in fluorescent intensity in horizontal brain stem slices evoked by electrical stimulation to the trigeminal spinal tract. A single-pulse stimulation evoked excitation propagation in the trigeminal caudalis (Vc). The propagation area was larger in N1-2 w than in N7-8 w, and no differences were observed between capsaicin-treated and naive mice in the same age groups. Repetitive stimulation (100 Hz, 30 pulses) elicited long-lasting and widespread excitation propagation. The excitation propagation area was significantly larger in N7-8 w than in N1-2 w, N3-4 w and N5-6 w. This propagation was suppressed by 5 microM L-703.606, an NK1-receptor antagonist, suggesting that the repetitive stimulation-elicited excitation may require substance-P releases. Morphological observations demonstrated that the neural network in the Vc had grown by postnatal week 5. These results suggest that nociceptive afferent activity co-operatively matures with development of the network structure in the Vc, and that a mechanism for prolonged increase in central excitability is established during a later postnatal period.