Background: Generation of thrombin occurs in response to parenchymal injury. Thrombin not only converts plasma fibrinogen into an insoluble fibrin clot, but also potentially augments inflammation through receptor-mediated activity. This study examines whether thrombin may potentially exacerbate fibrosis by upregulating the function of interstitial fibroblasts in vitro.
Methods: Fibroblasts were isolated by explant outgrowth culture of rat kidneys. Subcultured cells were grown in DMEM+10% FCS supplemented with 0.1-0.5 U/ml thrombin. Functional parameters examined included kinetics (thymidine incorporation and change in cell number), differentiation (Western blotting for alpha-smooth muscle actin; alphaSMA), expression of procollagen alpha1(I) (Northern blotting) and contraction of collagen I lattices. RT-PCR was used to characterise expression of protease-activated receptors (PAR) previously implicated in thrombin's cellular effects.
Results: Cell population growth was increased 66 +/- 41 and 47 +/- 41% by 0.1 and 0.5 U/ml thrombin respectively (both p < 0.05 vs. basal). Likewise, 0.5 U/ml thrombin increased corrected procollagen alpha1(I) expression 2.4-fold (p < 0.05 vs. basal) and exacerbated the ability of fibroblasts to contract collagen matrix (p < 0.05 vs. basal). These effects were not associated with any change in expression of the myofibroblast marker alphaSMA. Effects on cell number were inhibited by treatment with (D)-Phe-Pro-Arg-chloromethylketone HCl (PPACK) suggesting that functional effects were mediated by serine protease activity. PAR-1 was the only fully functional known thrombin receptor expressed by these cells.
Conclusion: Thrombin is a potential unrecognised fibroblast agonist in renal disease. Further studies of thrombin and its receptors may yield valuable insights into the pathogenesis of interstitial fibrosis.
Copyright 2005 S. Karger AG, Basel.