Objective: Hepatopancreaticobiliary cancers can be difficult to diagnose. Nuclear magnetic resonance (NMR) spectroscopy provides non-invasive information on phospholipid metabolism, and previous studies of liver tissue have highlighted changes in phospholipids in malignancy. We hypothesised that in-vitro NMR spectroscopy of human bile may provide independent diagnostic indices in cancer management through an assessment of the phospholipid content.
Design and methods: Bile samples from 24 patients were collected at endoscopic retrograde cholangiopancreatography and from one subject at cholecystectomy. Thirteen patients had cancer: pancreatic carcinoma (eight), cholangiocarcinoma (three) and metastatic liver disease (two). The remaining 12 patients had non-malignant pathology. In-vitro proton (H) and phosphorus-31 (P) NMR spectra were obtained from all samples using an 11.7 Tesla NMR spectroscopy system.
Results: Complementary information was obtained from the H and P NMR spectra. Signals were assigned to phosphatidylcholine in both H and P NMR spectra. Phosphatidylcholine levels were significantly reduced in the bile from cancer patients when compared with bile from non-cancer patients (P=0.007).
Conclusion: These preliminary studies suggest that H and P NMR spectroscopy of bile may be used to detect differences in phospholipid content between cancer and non-cancer patients. This may have implications for the development of novel diagnostic strategies in hepatopancreaticobiliary cancers. Further larger-scale studies are warranted.