Embryonic stem (ES) cells are pluripotent, possessing the unique property to differentiate into any somatic cell type while retaining the ability to proliferate indefinitely. Due to their ability to recapitulate embryonic differentiation, ES cells are an ideal tool to study the process of early embryogenesis in vitro. Signalling cascades and genes involved in differentiation can be easily studied, and functional genomics approaches aim to identify the regulatory networks underlying lineage commitment. Their unique ability to differentiate into any cell type make ES cells a prime candidate for cell replacement therapy (CRT) of various degenerative disorders. Results from various disease models are promising and have demonstrated their principal suitability as a therapeutic agent in diseases such as myocardial infarctions, diabetes mellitus and Parkinson's disease. Prior to clinical trials in humans, two issues remain to be solved: due to their high proliferative potential, ES cells can form teratocarcinomas in the recipient, and depending on the source of the cells, ES cell grafts may be rejected by the host organism. This review discusses the current state of basic ES cell research with a focus on cardiac differentiation and gives an overview of their use in CRT approaches.