Thyroid hormones (TH) enhance cardiac function and reverse gene changes typical of pathological hypertrophy. However, reports in humans, but not animals, indicate that excess TH can cause heart failure. Also, the effects of TH on normal and cardiomyopathic hearts are likely to be different. The goal of this study was to characterize the effects of prolonged hyperthyroidism on cardiac function, chamber and cellular remodeling, and protein expression in both normal and cardiomyopathic hearts. Hyperthyroidism was induced in 3-mo-old normal BIO F1B and dilated cardiomyopathic BIO TO2 hamsters. After TH treatment for 10 days and 2 mo, hemodynamics, echos, myocyte length, histology, and protein expression were assessed. After 10 days and 2 mo, there were no differences between TO2-treated (Tx) and TO2-untreated (Untx) hamsters in chamber diameters or left ventricular function. After 2 mo of treatment, however, F1B-Tx showed evidence of dilated heart failure vs. F1B-Untx. Chamber diameters were increased, and ejection fraction and positive and negative changes in pressure over time were reduced. In F1B-Tx and TO2-Tx hamsters, beta-myosin isoform expression was reduced, whereas alpha-myosin increased significantly in F1B-Tx only. In TO2-Tx hamsters, the percent of viable myocardium was increased, and percent fibronecrosis was reduced vs. TO2-Untx. Myocyte length increased with TH treatment in both hamster strains. We conclude that 1) excess TH can induce heart failure in normal animals as observed in humans, 2) reversal of myosin heavy chain expression does not necessarily improve heart function, and 3) excess TH altered cellular remodeling but did not adversely affect chamber function or dimensions in TO2 hamsters.