Nonsynonymous single nucleotide polymorphisms (nsSNPs) are prevalent in genomes and are closely associated with inherited diseases. To facilitate identifying disease-associated nsSNPs from a large number of neutral nsSNPs, it is important to develop computational tools to predict the nsSNP's phenotypic effect (disease-associated versus neutral). nsSNPAnalyzer, a web-based software developed for this purpose, extracts structural and evolutionary information from a query nsSNP and uses a machine learning method called Random Forest to predict the nsSNP's phenotypic effect. nsSNPAnalyzer server is available at http://snpanalyzer.utmem.edu/.