Calcium-deficient hydroxyapatite (CDHA) nano-crystals incorporated with bovine serum albumin (BSA) to form BSA-loaded nano-carriers were synthesized via both in-situ and ex-situ processes. Amount of BSA uptake by the CDHA nano-crystals and subsequent release behaviors of the BSA-loaded nano-carriers were investigated. The amount of BSA uptake by CDHA decreases with increasing pH but a larger amount was observed in the ex-situ compared to in-situ process above pH=8.0. The release profile showed a bursting behavior for the nano-carrier prepared via the ex-situ process, which is probably due to the desorption of BSA molecules. In contrast, for the sample synthesized via the in-situ process at a higher pH level, a slower release profile without bursting behavior due to the dissolution of the BSA-incorporated CDHA crystal is seen from high solution TEM that indicates different extent of interaction between BSA and CDHA. On the other hand, for the nano-carriers prepared via the same process at lower pH level, a two-stage release profile was detected. An initial bursting release is due to the desorption of BSA from the CDHA surface, followed by a slow release as a result of the dissolution of the BSA-incorporated nano-crystals along its c-axis direction.