Oxygen-bridged borate anions from tris(pentafluorophenyl)borane: synthesis, NMR characterization, and reactivity

Inorg Chem. 2005 Jul 11;44(14):5030-41. doi: 10.1021/ic0502168.

Abstract

The previously known anion [(C6F5)3B(mu-OH)B(C6F5)3]- (2) has been prepared by a two-step procedure, involving deprotonation of (C6F5)3BOH2 to give [B(C6F5)3OH]- (1), followed by addition of B(C6F5)3. The solution structure and the dynamics of 2 have been investigated by 1H and 19F NMR spectroscopy. The reaction of [NHEt3]2 with NEt3 resulted in the formation of [NHEt3]+ [(C6F5)3BOH]-, [NHEt3]+ [(C6F5)3BH]-, and (C6F5)3B- (CH2CH=N+ Et2). This indicates that in the presence of a nucleophile anion 2 can dissociate to B(C6F5)3 and 1. The reaction of [HDMAN]2 with 1,8-bis(dimethylamino)naphthalene (DMAN) confirmed this trend. In the presence of water, 2 transformed into the adduct [(C6F5)3BO(H)H...O(H)B(C6F5)3]- (3), containing the borate 1 hydrogen-bonded to a water molecule coordinated to B(C6F5)3. The same compound is formed by treating (C6F5)3BOH2 with 0.5 equiv of a base. A competition study established that for 1 the Lewis acid-base interaction with B(C6F5)3 is about 5 times preferred over H-bonding to (C6F5)3BOH2. The X-ray single-crystal analysis of [2-methyl-3H-indolium]3 provided the first experimental observation of an asymmetric H-bond in the [H3O2]- moiety, the measured O-H and H...O bond distances being significantly different [1.14(2) vs 1.26(2) A]. The reaction of NEt3 with an equimolar mixture of B(C6F5)3 and bis(pentafluorophenyl)borinic acid, (C6F5)2BOH, afforded the novel borinatoborate salt [NHEt3]+ [(C6F5)3BOB(C6F5)2]- ([NHEt3]4). X-ray diffraction showed that the B-O bond distances are significantly shorter than in [(C6F5)3B(mu-OH)B(C6F5)3]-. Variable-temperature 19F NMR revealed high mobility of the five aryl rings, at variance with the more crowded anion 2. 2D NMR correlation experiments showed that in CD2Cl2 the two anions [(C6F5)3BOH]- and [(C6F5)3BH]- form tight ion pairs with [NHEt3]+, in which the NH proton establishes a conventional (BO...HN) or an unconventional (BH...HN), respectively, hydrogen bond with the anion. The diborate anions 2-4, on the contrary, gave loose ion pairs with the ammonium cation, due both to the delocalized anionic charge and to the more sterically encumbered position of the oxygen atoms that should act as H-bond acceptors.