Objectives: Ischemia-reperfusion injury after lung transplantation is associated with significant morbidity and mortality. The activation of the transcription factor nuclear factor kappaB is central to the 2 important pathways that characterize ischemia-reperfusion injury, namely the inflammatory response and apoptosis. The purpose of this study was to determine the effects of nuclear factor kappaB inhibition on experimental lung transplant ischemia-reperfusion injury with gene transfer of the nuclear factor kappaB inhibitor IkappaB in a superrepressor form (IkappaBSR).
Methods: An orthotopic left lung transplant model in isogeneic rats was used, with 18 hours of prolonged cold storage of donor lung grafts used to create severe ischemia-reperfusion injury. Donor rats underwent endobronchial gene transfection with saline alone or adenovirus encoding either beta-galactosidase control or IkappaBSR 48 hours before harvest. The function of transplanted lung grafts was assessed on the basis of isolated graft oxygenation, wet/dry lung weight ratio, and myeloperoxidase activity. Nuclear factor kappaB activation was assessed by means of enzyme-linked immunosorbent assay. Apoptotic cell death was assessed by evaluating the levels of histone-associated DNA fragments and caspase-3 activity.
Results: Treatment of donor lung grafts with IkappaBSR resulted in significantly improved oxygenation compared with that seen in control tissue 24 hours after transplantation. IkappaBSR-treated lungs also demonstrated less pulmonary edema and reduced neutrophil infiltration 24 hours after reperfusion. Nuclear factor kappaB activation and apoptotic cell death induction 2 hours after transplantation was significantly reduced in IkappaBSR-treated lungs compared with in control lungs.
Conclusions: Inhibition of nuclear factor kappaB activation by IkappaBSR gene transfer improves transplanted lung graft oxygenation, decreases pulmonary edema and neutrophil sequestration, and reduces apoptotic cell death after experimental lung transplantation.