Advanced nanoscale separations and mass spectrometry for sensitive high-throughput proteomics

Expert Rev Proteomics. 2005 Jun;2(3):431-47. doi: 10.1586/14789450.2.3.431.

Abstract

Recent developments in combined separations with mass spectrometry for sensitive and high-throughput proteomic analyses are reviewed herein. These developments primarily involve high-efficiency (separation peak capacities of approximately 10(3)) nanoscale liquid chromatography (flow rates extending down to approximately 20 nl/min at optimal liquid mobile-phase separation linear velocities through narrow packed capillaries) in combination with advanced mass spectrometry and in particular, high-sensitivity and high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Such approaches enable analysis of low nanogram level proteomic samples (i.e., nanoscale proteomics) with individual protein identification sensitivity at the low zeptomole level. The resultant protein measurement dynamic range can approach 10(6) for nanogram-sized proteomic samples, while more abundant proteins can be detected from subpicogram-sized (total) proteome samples. These qualities provide the foundation for proteomics studies of single or small populations of cells. The instrumental robustness required for automation and providing high-quality routine performance nanoscale proteomic analyses is also discussed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Chromatography, Liquid
  • Cyclotrons
  • Mass Spectrometry / methods
  • Nanotechnology / methods*
  • Proteins / chemistry*
  • Proteins / isolation & purification*
  • Proteomics / methods*
  • Proteomics / standards
  • Sensitivity and Specificity
  • Spectrometry, Mass, Electrospray Ionization / methods
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Proteins