Beijing/W strains of Mycobacterium tuberculosis are geographically widespread and hypervirulent. To enhance our understanding of their origin and evolution, we sought phylogenetically informative large sequence polymorphisms (LSPs) within the Beijing/W family. Comparative whole-genome hybridization of Beijing/W strains revealed 21 LSPs, 7 of which were previously unreported. We show that some of these LSPs are unique event polymorphisms that can be used to define and subdivide the Beijing/W family. One LSP (RD105) was seen in all Beijing/W strains and thus serves as a useful marker for the identification of this family of strains. Additional LSPs (RD142, RD150, and RD181) further divided this family into four monophyletic subgroups, demonstrating a deeper population structure than previously appreciated. All Beijing/W strains were also observed to have an intact pks15/1 gene that is involved in the biosynthesis of a phenolic glycolipid, a putative virulence factor. A simple PCR assay using these Beijing/W strain-defining deletions will facilitate molecular epidemiological studies and may assist in the identification of the molecular basis of phenotypes associated with this important lineage of M. tuberculosis.