In this study we analysed the relationship between bacterial community structures and geochemistry of groundwater in a sandstone aquifer (SIReN site) impacted mainly by BTEX hydrocarbons (benzene, toluene, ethylbenzene and xylenes), of which benzene is most abundant. The long-term presence of benzene reduced bacterial diversity: in groundwaters contaminated with more than 1.8 x 10(4) microg l(-1) of benzene, bacterial diversity was half of that in clean groundwaters. Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rDNA revealed that the community structures were very similar in uncontaminated groundwaters, whereas communities subjected to long-term benzene contamination were different, not only from uncontaminated groundwater communities, but also from each other. Canonical correspondence analysis of the community profiles and the geochemical data showed that this divergence in community structure was not primarily caused by the direct toxic or stressful effects of benzene, but by the environmental changes brought about by benzene metabolism, in particular a decrease in redox potential.