Peroxisome proliferator-activated receptors (PPARs) are a subfamily of nuclear hormone receptors that function as ligand-activated transcription factors to regulate lipid metabolism and homeostasis. In addition to their ability to promote gene transcription in a PPAR-dependent manner, ligands for this receptor family have recently been shown to induce mitogen-activated protein kinase (MAPK) phosphorylation. It is noteworthy that the transcriptional changes induced by PPAR ligands can be separated into distinct PPAR- and MAPK-dependent signaling pathways, suggesting that MAPKs alone mediate some of the effects of PPAR agonists in a nongenomic manner. This review will highlight recent studies that elucidate the nongenomic mechanisms of PPAR ligand-induced MAPK phosphorylation. The potential relevance of MAPK signaling in PPAR biology is also discussed.