Objectives: The aim of this study was to investigate the contribution of host-derived circulating cells to cardiac repair after tissue damage using the model of heterotopic heart transplantation between transgenic recipient rats expressing green fluorescent protein (GFP) and wild-type donors.
Methods: Unlabeled donor rat hearts, some of which underwent prolonged cold ischemia pretreatment, were transplanted into the abdominal cavity of GFP+ transgenic recipient rats and were analyzed 15 and 90 days after surgery. An additional experimental group underwent heart transplantation following administration of granulocyte-colony stimulatory factor (G-CSF) to mobilize bone marrow cells.
Results: Most transplants contained GFP+ mature cardiomyocytes. However, systematic counting in the transplants showed that the proportion of GFP+ cardiomyocytes was only 0.0005% to 0.008% of all cardiomyocytes. These relative proportions did not change after G-CSF treatment, despite evidence for sustained marrow cell mobilization. Confocal image analysis showed that the majority of GFP+ cardiomyocytes contained a high number of nuclei, suggesting that these cells may derive from fusion events. Very rarely, small GFP+ undifferentiated cells, expressing GATA-4, were also identified. Occasionally, GFP+ endothelial cells, but not smooth muscle cells, were detected in blood vessels of some transplants.
Conclusions: Our results demonstrate that cardiomyocytes expressing a host transgenic marker are detectable in heterotopic heart transplants; however, they do not significantly contribute to repopulation of the damaged myocardium.