Seven hundred fifteen crossbred (primarily British) calves purchased in southern Oklahoma and northern Texas auction barns were received at the Willard Sparks Beef Research Center, Stillwater, OK, and used to study effects of duration (days) of vitamin E feeding during a 42-d receiving period on animal performance, health, and serum cholesterol and vitamin E concentrations. Upon arrival, calves were blocked by load (seven loads), sorted by BW (light, n = 4 pens per load; and heavy, n = 4 pens per load), and assigned randomly to one of four dietary treatments (n = 2 pens per load; 14 pens per treatment). Experimental diets were formulated to provide 2,000 IU.calf(-1).d(-1) of supplemental vitamin E (dl-alpha-tocopherol acetate) for 0 (CON), 7 (E7), 14 (E14), or 28 (E28) d. Vitamin E was delivered in a pelleted supplement that was added to the basal diet in decreasing concentrations as DMI increased (2.0 kg of DMI = 6%; 4.0 kg of DMI = 4%; and 6.0 kg of DMI = 2%). Serum samples were collected on d 0, 14, 28, and 42 for determination of cholesterol, alpha-tocopherol (d 0, 28, and 42), and antibody (IgG) concentrations. Duration of vitamin E supplementation did not affect ADG (0.98 kg/d; P = 0.56) or G:F (0.189; P = 0.87). Serum cholesterol concentrations decreased (day effect; P < 0.001) for all treatments from d 0 (average = 127 mg/100 mL) to 14 (average = 62 mg/100 mL). Serum alpha-tocopherol decreased (day effect; P < 0.001) from d 0 (5.2 microg/mL) to 28 (1.8 microg/mL); however, on d 28, a greater (P < 0.001) serum alpha-tocopherol concentration was observed for E28 (3.4 microg/mL) calves than for CON (1.1 microg/mL), E7 (1.2 microg/mL), or E14 (1.5 microg/mL) calves. Respiratory disease was diagnosed in 64.6% of calves in this study. Medical costs were less (P = 0.08) for calves fed vitamin E for 28 d (4.88 dollars/calf) than for calves fed the control diet (6.29 dollars/calf). Carcass characteristics were not affected (P = 0.19 to 0.88) by dietary treatments. Supplemental vitamin E formulated for 2,000 IU.calf(-1).d(-1) had little influence on performance and overall health status of calves under our experimental conditions; however, the increased serum concentrations of alpha-tocopherol when vitamin E was fed for 28 d suggests that any potential effects of vitamin E on health status might be time-dependent.