Noninfectious human immunodeficiency virus type 1 (HIV-1) viruslike particles containing chimeric envelope glycoproteins were expressed in mammalian cells by using inducible promoters. We engineered four expression vectors in which a synthetic oligomer encoding gp120 residues 306 to 328 (amino acids YNKRKRIHIGP GRAFYTTKNIIG) from the V3 loop of the MN viral isolate was inserted at various positions within the endogenous HIV-1LAI env gene. Expression studies revealed that insertion of the heterologous V3(MN) loop segment at two different locations within the conserved region 2 (C2) of gp120, either 173 or 242 residues away from the N terminus of the mature subunit, resulted in the secretion of fully assembled HIV-like particles containing chimeric LAI/MN envelope glycoproteins. Both V3 loop epitopes were recognized by loop-specific neutralizing antibodies. However, insertion of the V3(MN) loop segment into other regions of gp120 led to the production of envelope-deficient viruslike particles. Immunization with HIV-like particles containing chimeric envelope proteins induced specific antibody responses against both the autologous and heterologous V3 loop epitopes, including cross-neutralizing antibodies against the HIV-1LAI and HIV-1MN isolates. This study, therefore, demonstrates the feasibility of genetically engineering optimized HIV-like particles capable of eliciting cross-neutralizing antibodies.