Essential hypertension is a common disease with multifactorial etiology affecting up to 10 million individuals in the United Kingdom alone. Current knowledge of the genetic contribution to this trait is restricted to a number of rare variants that produce hypertensive phenotypes in a Mendelian fashion and to genes highlighted by work on blood pressure regulation in rodent models. Recent advances in comparative genomics, genome-wide scans for linkage, transcriptomics, proteomics, and metabolomics allow a systematic approach to the prioritization of candidate genes for hypertension and other complex traits. We review the current state of play in these fields related to hypertension and show, with a particular example, how these data may help target genetic studies in the future.