Colocalization of c-Src (pp60src) and bone morphogenetic protein 2/4 expression during mandibular distraction osteogenesis: in vivo evidence of their role within an integrin-mediated mechanotransduction pathway

Ann Plast Surg. 2005 Aug;55(2):207-15. doi: 10.1097/01.sap.0000164576.10754.aa.

Abstract

Craniofacial distraction osteogenesis (DO) is an evolving reconstructive technique with expanding applications for the treatment of bony deficiencies of the facial skeleton. Mechanical force has been known to play a fundamental role in modulating sustained osteogenic response and therefore is believed to function as a critical regulator of DO. We hypothesize that key clustering components of an integrin-mediated signaling pathway, including c-Src (pp60), are necessary for mediating the response to mechanical force. The specific aim of this study is to demonstrate up-regulation of a key focal adhesion molecule, c-Src, selectively in new bone formation subject to the mechanical forces of distraction and to demonstrate a lack of that same up-regulation in new bone formation associated with simple fracture healing. An additional specific aim is to demonstrate colocalization of c-Src expression and bone morphogenetic protein (BMP 2/4) expression during mandibular DO. Using a rat model of mandibular DO, c-Src and BMP 2/4 expression were evaluated in critical size defects, subcritical size defects, and mandibles undergoing gradual distraction. Osseous regeneration was observed in the course of gradual distraction; this process was associated with increased expression of c-Src. Furthermore, the presence of BMP 2/4 closely approximated c-Src expression spatially and temporally, suggesting a link between cytoplasmic focal adhesion activation and the resultant nuclear regulation of osteogenic protein expression. In significant contradistinction, minimal c-Src expression was found in the subcritical-sized defects where the fractures healed secondarily but where no gradual distraction was performed. Instead, the new bone formation inherent in the secondarily healed subcritical-sized defects demonstrated expected BMP 2/4 expression but was devoid of an up-regulation of c-Src. Finally, as expected, minimal expression of both c-Src and BMP was found in fibrous nonunion specimens. C-src expression was observed during gradual distraction; furthermore, minimal c-Src expression was visualized during subacute and critical-size defect fracture healing. C-Src expression also closely approximated BMP expression during DO. These findings that c-Src expression is found primarily only during conditions of cyclic distraction forces strongly implicates that mechanical force during gradual distraction is associated with c-Src expression. These results provide in vivo support for previous in vitro evidence that mechanical force profoundly influences osseous regeneration during distraction osteogenesis by means of a c-Src dependent mechanotransduction pathway, resulting in increased expression of osteogenic proteins, including BMP 2/4.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bone Morphogenetic Protein 2
  • Bone Morphogenetic Protein 4
  • Bone Morphogenetic Proteins / genetics*
  • Bone Regeneration / physiology*
  • Focal Adhesion Kinase 1 / genetics
  • Hypertrophy / pathology
  • Immunohistochemistry
  • Integrins / physiology*
  • Mandible / pathology
  • Mandible / physiology*
  • Mechanotransduction, Cellular / physiology*
  • Neural Pathways / pathology*
  • Osteogenesis, Distraction*
  • Protein-Tyrosine Kinases / genetics
  • Proto-Oncogene Proteins pp60(c-src) / genetics*
  • Rats
  • Rats, Sprague-Dawley
  • Transforming Growth Factor beta / genetics*

Substances

  • Bmp2 protein, rat
  • Bmp4 protein, rat
  • Bone Morphogenetic Protein 2
  • Bone Morphogenetic Protein 4
  • Bone Morphogenetic Proteins
  • Integrins
  • Transforming Growth Factor beta
  • Protein-Tyrosine Kinases
  • Focal Adhesion Kinase 1
  • Proto-Oncogene Proteins pp60(c-src)
  • Ptk2 protein, rat