There is abundant epidemiological evidence that vegetable consumption decreases colorectal cancer (CRC) risk. However, the molecular targets in the genome are mostly unknown. The present study investigated the effects of vegetable consumption on gene expression in the colon mucosa of female C57Bl/6 mice using cDNA microarray technology. Mice were fed one of 8 diets: a control diet containing no vegetables (diet 1); a diet containing 100 g/kg (diet 2, 10% dose), 200 g/kg (diet 3, 20% dose), or 400 g/kg (diet 4, 40% dose) of a vegetable mixture; or a diet containing 70 g/kg of cauliflower (diet 5, 7% dose), 73 g/kg of carrots (diet 6, 7.3% dose), 226 g/kg of peas (diet 7, 22.6% dose); or 31 g/kg of onions (diet 8, 3.1% dose). The vegetable mixture used in diets 2 to 4 consisted of the 4 individual vegetables used in diets 5 to 8: cauliflower (30% wet wt), carrots (30% wet wt), peas (30% wet wt), and onions (10% wet wt). To assess gene expression changes, colonic mucosal cells were collected after the mice were killed. Total RNA was isolated and microarray technology was used to measure the expression levels of 602 genes simultaneously. For 39 genes, significant dose-dependent effects were found, although in general the relations were not linear. For 15 genes, the altered expression could indeed explain reduced cancer risk at various stages of CRC development. Eleven genes were modulated by the vegetable mixture as well as by one or more of the individual vegetables. For 7 of the genes, the modulation by the mixture was due to the effect of a particular vegetable. These genes are of particular interest because they were consistently affected and could be involved in the prevention of CRC by vegetable consumption.