The Autism Genome Project: goals and strategies

Am J Pharmacogenomics. 2005;5(4):233-46. doi: 10.2165/00129785-200505040-00004.

Abstract

Autism is a complex neurodevelopmental disorder with a broad spectrum of symptoms and varying severity. Currently, no biological diagnosis exists. Although there has been a significant increase in autism genetics research recently, validated susceptibility genes for the most common, sporadic forms of autistic disorder, as well as familial autism, have yet to be identified. The identification of autism-susceptibility genes will not only assist in the identification and/or development of better medications that can help improve the health and neurodevelopment of children with autism, but will also allow for better perinatal diagnosis. The Autism Genome Project (AGP) is a large-scale, collaborative genetics research project initiated by the National Alliance for Autism Research and the National Institutes of Health, and is aimed at sifting through the human genome in search of autism-susceptibility genes. Phase I of the AGP will consist of genome-wide scans utilizing both SNP array and microsatellite technologies. Linkage analysis will subsequently be performed on approximately 1500 pedigrees as will downstream fine-mapping and sequencing of the critical linkage intervals. Ultimately, the vision will be to identify the exact nucleotide variants within genes which give rise to predisposition. The AGP intends to move the field of autism clinical management forward by answering questions about the causal mechanisms underlying the pathophysiology of autism. From this knowledge, therapeutic targets for drug treatments, and ultimately, a newborn screening diagnostic that would allow for early intervention, can begin to be developed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Autistic Disorder / genetics*
  • Autistic Disorder / psychology
  • Genetic Linkage
  • Genomics
  • Genotype
  • Human Genome Project
  • Humans
  • Polymorphism, Single-Stranded Conformational