In 3T3-L1 preadipocytes, hormonal induction causes adipose conversion and facilitates the expression of insulin-sensitive glucose transporter, GLUT4. Evidence has accumulated that, in 3T3-L1 preadipocytes, the formation of GLUT4 storage vesicle and its translocation to plasma membrane precede both lipid accumulation and expression of GLUT4 and C/EBPalpha, a key transcription factor for adipose differentiation. On the other hand, 3T3-C2 fibroblastic cells, a subline of 3T3-L1, follow adipogenic process till mitotic clonal expansion stage (2 days after hormonal induction), but do not proceed to terminal differentiation stage (8 days after the induction), resulting in a lack of adipose conversion and GLUT4 expression. Here we show that, when myc-tagged GLUT4 was retrovirally expressed in 3T3-C2 cells, insulin-stimulated GLUT4 translocation did occur on day 2 after the induction. On day 8 after the induction, however, neither GLUT4 translocation nor the expression of C/EBPalpha was observed. We also created 3T3-C2 cells stably expressing both myc-tagged GLUT4 and C/EBPalpha, demonstrating that co-expressed cells showed insulin-stimulated GLUT4 translocation on day 8 after the induction, as well as adipose conversion coupling with PPARgamma expression. Our results provide evidence that C/EBPalpha has the potential to maintain the ability of insulin-stimulated GLUT4 translocation in C/EBPalpha-deficient 3T3-C2 fibroblastic cells.