Shadow effects in spiral phase contrast microscopy

Phys Rev Lett. 2005 Jun 17;94(23):233902. doi: 10.1103/PhysRevLett.94.233902. Epub 2005 Jun 15.

Abstract

Recently it has been demonstrated that spatial filtering of images in microscopy with a spiral phase element in a Fourier plane of the optical path results in a strong edge enhancement of object structures. In principle the operation is isotropic, i.e., all phase edges of a sample object are highlighted simultaneously, independent of their local direction. However, here we demonstrate that the symmetry can be broken intentionally by controlling the phase of the central area of a spiral phase hologram, which is displayed at a computer controlled spatial light modulator. This produces an apparent shadow effect which can be rotated at video rate. The resulting relieflike impression of the sample topography with a longitudinal resolution in the subwavelength regime is demonstrated by imaging a standard low contrast test sample consisting of a human cheek cell.