We report on the observation of the strong-coupling regime between the excitonic transition of a single GaAs quantum dot and a discrete optical mode of a microdisk microcavity. Photoluminescence is performed at various temperatures to tune the quantum dot exciton with respect to the optical mode. At resonance, we observe a clear anticrossing behavior, signature of the strong-coupling regime. The vacuum Rabi splitting amounts to 400 microeV and is twice as large as the individual linewidths.