Study design: An experimental animal study to achieve posterolateral intertransverse process spine fusion with recombinant bone morphogenetic protein in combination with a new delivery system.
Objective: To evaluate the efficacy of a new synthetic biodegradable bone-inducing material containing recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone-graft substitute for posterolateral intertransverse process fusion in a rabbit model.
Summary of background data: rhBMP-2, a powerful bone-inducing cytokine, has been used as a bone graft substitute in combination with animal-derived collagen to achieve spinal fusion in animal models. However, the minimum dose of rhBMP-2 required to obtain solid posterolateral intertransverse process fusion was high on the basis of previous reports (>100 microg in rabbit models). To improve the efficacy, performance of rhBMP-2, and the safety of the delivery system for this protein, a more sophisticated system is required.
Methods: To fabricate one implant for one-side L4-L5 intertransverse process fusion, beta-tricalcium phosphate (beta-TCP) powder (300 microg), a polymer gel (PLA-DX-PEG block copolymer; 300 microg) and rhBMP-2 (7.5, 15, or 30 microg) were mixed and manually shaped to resemble a rod. Through a posterolateral approach, two implants were placed on both sides (1 per side) by surgery so as to bridge the transverse processes of adult New Zealand white rabbits (n = 27). In control animals, implants without rhBMP or autogenous cortico-cancellous bone chips from the iliaccrest were placed in a similar location. The lumbar vertebrae were recovered 6 weeks after surgery. The posterolateral fusion was examined by manual palpation, radiography, biomechanical testing, and histology.
Results: Rabbits that received 15 or 30 microg of rhBMP-2 showed consistent fusion. However, solid fusion was seen in 2 of 5 rabbits with autografting and rabbits that received 7.5 microg of rhBMP-2. Fusion was not observed in the rabbits that did not receive rhBMP-2.
Conclusions: Consistent spinal fusion was obtained by implanting a biodegradable bone-inducing implant composed of beta-TCP, PLA-DX-PEG, and rhBMP-2 within a period of 6 weeks. The rhBMP-2 doses required for the spinal fusion were significantly lower than those reported previously.