Background: There is little direct evidence that fibroblasts are involved in the progression of the renal interstitial fibrosis in human glomerulonephritis. With the availability of a new specific marker for fibroblasts, we determined the presence of fibroblasts in kidneys with IgA nephropathy (IgAN) and correlated their numbers with various clinical parameters. In particular, we also prospectively asked if the number of fibroblasts in the renal interstitium correlates with prognosis.
Methods: Cells positive for fibroblast-specific protein 1 (FSP1) were localized in renal biopsy specimens using immunohistochemistry with anti-FSP1 antibody. Clinical features were analyzed by one-way analysis of variance (ANOVA) with the Bonferroni correction. To assess the prognostic impact of the number of FSP1+ fibroblasts on renal survival in 142 patients with normal serum creatinine, the relationship between covariates to renal survival were evaluated univariately using the log-rank test and multivariately using Cox proportional hazards.
Results: Fibroblasts identified by their expression of FSP1 accumulate in areas showing severe interstitial fibrosis. Some tubular epithelial cells undergoing epithelial-mesenchymal transition (EMT) in fibrotic areas also express FSP1. Numbers of FSP1+ fibroblasts directly correlate with serum creatinine (r = 0.74, P < 0.0001) and inversely correlate with estimated creatinine clearance (r = -0.54, P < 0.0001), and by multivariate analysis, the clinical factors influencing renal survival are urinary protein excretion [> or = 1.0 g/day, relative risk (RR) = 4.20, P= 0.032], hypertension (RR 5.85, P = 0.0027), and > or = 20 FSP1+ fibroblasts per high power field (HPF) (RR 7.39, P = 0.0015). Staining for FSP1+ fibroblasts is largely nonoverlapping with alpha-smooth muscle actin+ (alpha-SMA) cells in the interstitium.
Conclusion: The target protein FSP1 identifies human fibroblasts and tubular epithelium undergoing EMT, and distinguishes them from the diaspora of alpha-SMA+ vascular smooth muscle cells. FSP1+ fibroblasts are critically related to the progression of IgAN; consequently, staining FSP1 in renal biopsy specimens provides a valuable histologic index of progression.