Amyotrophic lateral sclerosis (ALS) represents a fatal neurodegenerative disorder characterized by progressive death of the upper and lower motor neurons. Because accompanying inflammation may interact with and promote neurodegeneration, anti-inflammatory treatment strategies are being evaluated. Because peroxisome proliferator-activated receptor gamma (PPARgamma) agonists act as potent anti-inflammatory drugs, we tested whether superoxide dismutase (SOD1)-G93A transgenic mice, a mouse model of ALS, benefit from oral treatment with the PPARgamma agonist pioglitazone (Pio). Pio-treated transgenic mice revealed improved muscle strength and body weight, exhibited a delayed disease onset, and survived significantly longer than nontreated SOD1-G93A mice. Quantification of motor neurons of the spinal cord at day 90 revealed complete neuroprotection by Pio, whereas nontreated SOD1-G93A mice had lost 30% of motor neurons. This was paralleled by preservation of the median fiber diameter of the quadriceps muscle, indicating not only morphological but also functional protection of motor neurons by Pio. Activated microglia were significantly reduced at sites of neurodegeneration in Pio-treated SOD1-G93A mice, as were the protein levels of cyclooxygenase 2 and inducible nitric oxide synthase. Interestingly, mRNA levels of the suppressor of cytokine signaling 1 and 3 genes were increased by Pio, whereas both the mRNA and protein levels of endogenous mouse SOD1 and of transgenic human SOD1 remained unaffected.