We report here that microarrays comprised of several thousand peptoids (oligo-N-substituted glycines) are useful tools for the identification of proteins via a "fingerprinting" approach. By using maltose-binding protein, glutathione S-transferase, and ubiquitin, a specific and highly reproducible pattern of binding was observed when fluorescently labeled protein was hybridized to the array. A similar pattern was obtained when binding of an unlabeled protein to the array was visualized by secondary hybridization of a labeled antibody against that protein, showing that native proteins can be identified without the requirement for prior chemical labeling. This work suggests that small-molecule microarrays might be used for more complex fingerprinting assays of potential diagnostic value.