Objective: The importance of PAR-1 in blood vessel development has been demonstrated in knockout mice. As endothelial progenitor cells (EPCs) are involved in postnatal vasculogenesis, we examined whether they express PAR-1 and whether stimulation by the peptide SFLLRN modulates their angiogenic properties.
Methods and results: EPC expanded from human CD34+ cord blood cells expressed PAR-1. PAR-1 activation induced EPC proliferation in a concentration-dependent manner far more potently than that of human umbilical vein endothelial cells. PAR-1 activation also enhanced actin reorganization, promoting both spontaneous migration in a Boyden chamber assay and migration toward SDF-1 and VEGF. As shown by real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR), EPC stimulation by SFLLRN significantly enhanced the mRNA expression of SDF-1 and its receptor CXCR-4. PAR-1 activation also increased CXCR4 expression on EPC and induced SDF-1 secretion, leading to autocrine stimulation. PAR-1 stimulation by SFLLRN also increased the formation of capillary-like structures by EPC in Matrigel, and this effect was abrogated by anti-CXCR-4, anti-SDF-1, and MEK inhibitor pretreatment.
Conclusions: Human EPCs express functional PAR-1. PAR-1 activation promotes cell proliferation and CXCR4-dependent migration and differentiation, leading to a proangiogenic effect.