Parvalbumin, the major fish allergen, is recognized by allergen-specific IgE of more than 90% of all fish-allergic patients. A detailed knowledge of allergenic structures is crucial for developing a vaccine inducing blocking antibodies specifically directed towards the IgE binding epitopes. In the present study we aimed to use the phage display technique to generate mimotopes, which mimic epitopes on parvalbumin. Parvalbumin-specific IgE was purified from sera of fish-allergic patients and used for screening of a constrained decamer phage library. After four rounds of biopanning using parvalbumin-specific IgE, five phage clones were selected which were specifically recognized by parvalbumin-specific IgE as well as IgG. DNA sequencing and peptide alignment revealed a high degree of sequence similarities between the mimotopes. Interestingly, on the surface of natural parvalbumin three regions could be defined by computational mimotope matching. In accordance, previously defined allergenic peptides of cod parvalbumin highlighted areas in close proximity or overlapping with the mimotope matching sites. From the presented data we conclude that our approach identified conformational epitopes of parvalbumin relevant for IgE and IgG binding. We suggest that these mimotopes are suitable candidates for an epitope-specific immunotherapy of fish-allergic patients.