C-terminal tail residue Arg1400 enables NADPH to regulate electron transfer in neuronal nitric-oxide synthase

J Biol Chem. 2005 Nov 25;280(47):39208-19. doi: 10.1074/jbc.M507775200. Epub 2005 Sep 8.

Abstract

The neuronal nitric-oxide synthase (nNOS) flavoprotein domain (nNOSr) contains regulatory elements that repress its electron flux in the absence of bound calmodulin (CaM). The repression also requires bound NADP(H), but the mechanism is unclear. The crystal structure of a CaM-free nNOSr revealed an ionic interaction between Arg(1400) in the C-terminal tail regulatory element and the 2'-phosphate group of bound NADP(H). We tested the role of this interaction by substituting Ser and Glu for Arg(1400) in nNOSr and in the full-length nNOS enzyme. The CaM-free nNOSr mutants had cytochrome c reductase activities that were less repressed than in wild-type, and this effect could be mimicked in wild-type by using NADH instead of NADPH. The nNOSr mutants also had faster flavin reduction rates, greater apparent K(m) for NADPH, and greater rates of flavin auto-oxidation. Single-turnover cytochrome c reduction data linked these properties to an inability of NADP(H) to cause shielding of the FMN module in the CaM-free nNOSr mutants. The full-length nNOS mutants had no NO synthesis in the CaM-free state and had lower steady-state NO synthesis activities in the CaM-bound state compared with wild-type. However, the mutants had faster rates of ferric heme reduction and ferrous heme-NO complex formation. Slowing down heme reduction in R1400E nNOS with CaM analogues brought its NO synthesis activity back up to normal level. Our studies indicate that the Arg(1400)-2'-phosphate interaction is a means by which bound NADP(H) represses electron transfer into and out of CaM-free nNOSr. This interaction enables the C-terminal tail to regulate a conformational equilibrium of the FMN module that controls its electron transfer reactions in both the CaM-free and CaM-bound forms of nNOS.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution
  • Animals
  • Arginine / chemistry
  • Base Sequence
  • Calmodulin / metabolism
  • DNA, Complementary / genetics
  • Electron Transport
  • Heme / metabolism
  • Humans
  • In Vitro Techniques
  • Kinetics
  • Models, Biological
  • Models, Molecular
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • NADP / metabolism*
  • Nitric Oxide / biosynthesis
  • Nitric Oxide Synthase Type I / chemistry*
  • Nitric Oxide Synthase Type I / genetics
  • Nitric Oxide Synthase Type I / metabolism*
  • Oxidation-Reduction
  • Protein Conformation
  • Protein Structure, Tertiary
  • Rats
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Sequence Homology, Amino Acid

Substances

  • Calmodulin
  • DNA, Complementary
  • Recombinant Proteins
  • Nitric Oxide
  • Heme
  • NADP
  • Arginine
  • Nitric Oxide Synthase Type I