Prostaglandin E(2) (PGE(2)) enhances osteoclast formation in mouse macrophage cultures treated with receptor activator of nuclear factor-kappaB ligand (RANKL). The effects of PGE(2) on human osteoclast formation were examined in cultures of CD14(+) cells prepared from human peripheral blood mononuclear cells. CD14(+) cells differentiated into osteoclasts in the presence of RANKL and macrophage colony-stimulating factor. CD14(+) cells expressed EP2 and EP4, but not EP1 or EP3, whereas CD14(+) cell-derived osteoclasts expressed none of the PGE(2) receptors. PGE(2) and PGE(1) alcohol (an EP2/4 agonist) stimulated cAMP production in CD14(+) cells. In contrast to mouse macrophage cultures, PGE(2) and PGE(1) alcohol inhibited RANKL-induced human osteoclast formation in CD14(+) cell cultures. H-89 blocked the inhibitory effect of PGE(2) on human osteoclast formation. These results suggest that the inhibitory effect of PGE(2) on human osteoclast formation is mediated by EP2/EP4 signals. SaOS4/3 cells have been shown to support human osteoclast formation in cocultures with human peripheral blood mononuclear cells in response to PTH. PGE(2) inhibited PTH-induced osteoclast formation in cocultures of SaOS4/3 cells and CD14(+) cells. Conversely, NS398 (a cyclooxygenase 2 inhibitor) enhanced osteoclast formation induced by PTH in the cocultures. The conditioned medium of CD14(+) cells pretreated with PGE(2) inhibited RANKL-induced osteoclast formation not only in human CD14(+) cell cultures, but also in mouse macrophage cultures. These results suggest that PGE(2) inhibits human osteoclast formation through the production of an inhibitory factor(s) for osteoclastogenesis of osteoclast precursors.