In amphibian oocytes, it is known that germinal vesicle (GV) materials are essential for sperm head decondensation but not for activation of MPF (CDK1 and cyclin B). However, in large animals, the role of GV materials in maturation and fertilization is not defined. In this study, we prepared enucleated pig oocytes at the GV stage and cultured them to examine the activation and inactivation of CDK1 and MAP kinase during maturation and after electro-activation. Moreover, enucleated GV-oocytes after maturation culture were inseminated or injected intracytoplasmically with spermatozoa to examine their ability to decondense the sperm chromatin. Enucleated oocytes showed similar activation/inactivation patterns of CDK1 and MAP kinase as sham-operated oocytes during maturation and after electro-stimulation or intracytoplasmic sperm injection. During the time corresponding to MI/MII transition of sham-operated oocytes, enucleated oocytes inactivated CDK1. However, penetrating sperm heads in enucleated oocytes did not decondense enough to form male pronuclei. To determine whether the factor(s) involved in sperm head decondensation remains associated with the chromatin after GV breakdown (GVBD), we did enucleation soon after GVBD (corresponding to pro-metaphase I, pMI) to remove only chromosomes. The injected sperm heads in pMI-enucleated oocytes decondensed and formed the male pronuclei. These results suggest that in pig oocytes, GV materials are not required for activation/inactivation of CDK1 and MAP kinase, but they are essential for male pronucleus formation.