Hematopoiesis has provided a valuable model for examining how genetic programs are established and executed in terms of cell fate decision. Identification of common myeloid and lymphoid progenitors allows us to directly assess the regulatory mechanisms of lineage commitment. Multiple markers of hematopoietic lineages are coexpressed in hematopoietic stem cells and progenitors, a phenomenon referred to as lineage priming. Promiscuous expression of several lineage-affiliated genes precedes lineage commitment but does not alter the biological potential of hematopoietic stem cells and multipotent progenitors. Promiscuous accessibility of multiple programs allows flexibility in cell fate commitment at the multipotent stages, indicating that transcriptional promiscuity can operate in stem cells and progenitors to control their transition from multipotency to single-lineage commitment.