Background: Nitric oxide availability, which is decreased in advanced coronary artery disease associated with endothelial dysfunction, is an important mediator of fibroblast growth factor-2 (FGF-2)-induced angiogenesis. This could explain the disappointing results of FGF-2 therapy in clinical trials despite promising preclinical studies. We examined the influence of L-arginine supplementation to FGF-2 therapy on myocardial microvascular reactivity and perfusion in a porcine model of endothelial dysfunction.
Methods and results: Eighteen pigs were fed either a normal (NORM, n=6) or high cholesterol diet, with (HICHOL-ARG, n=6) or without (HICHOL, n=6) L-arginine. All pigs underwent ameroid placement on the circumflex artery and 3 weeks later received surgical FGF-2 treatment. Four weeks after treatment, endothelial-dependent coronary microvascular responses and lateral myocardial perfusion were assessed. Endothelial cell density was determined by immunohistochemistry. FGF-2, fibroblast growth receptor-1, endothelial-derived nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and syndecan-4 levels were determined by immunoblotting. Pigs from the HICHOL group showed endothelial dysfunction in the circumflex territory, which was normalized by L-arginine supplementation. FGF-2 treatment was ineffective in the HICHOL group (circumflex/left anterior descending blood flow ratios: 1.01 (rest) and 1.01 (pace), after and before treatment). Addition of L-arginine improved myocardial perfusion in response to FGF-2 at rest (ratio 1.13, P=0.02 versus HICHOL) but not during pacing (ratio 0.94, P=NS), and was associated with increased protein levels of iNOS and eNOS.
Conclusions: L-arginine supplementation can partially restore the normal response to endothelium-dependent vasorelaxants and myocardial perfusion in response to FGF-2 treatment in a swine model of hypercholesterolemia-induced endothelial dysfunction. These findings suggest a role for L-arginine in combination with FGF-2 therapy for end-stage coronary artery disease.