The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. The "new permeability pathways" allow the fast electrogenic diffusion of ions and thus can be analyzed by patch-clamp single-channel or whole-cell recording. By employing these techniques, several ion-channel types with different electrophysiological profiles have been identified in P. falciparum-infected erythrocytes; they have also been identified in noninfected cells. This review discusses a possible contribution of these channels to the new permeability pathways on the one hand and their supposed functions in noninfected erythrocytes on the other.