Metabolism of N-nitrosomethyl-n-amylamine by microsomes from human and rat esophagus

Cancer Res. 1992 Jul 1;52(13):3547-51.

Abstract

Asymmetric dialkylnitrosamines induce esophageal cancer in rats and hence might be involved in the etiology of this cancer in humans. As a test of this hypothesis, we examined whether nitrosamines can be activated by segments of human esophagus and by microsomes of human and rat esophagus and liver. Specimens of 8 human esophagi were removed less than 6 h after death, and segments were incubated for 6 h with 23 and 300 microM N-nitrosomethyl-n-amylamine (NMAA). Hydroxy-NMAA yields were determined by gas chromatography-thermal energy analysis and were insignificant except for those of 5-hydroxy-NMAA, which were low. Microsomes were prepared from 4 batches of human esophagi and samples with 0.6 mg protein were incubated for 20 min with NMAA and cytochrome P-450 cofactors. We determined hydroxy-NMAAs as before and aldehydes by high-performance liquid chromatography of their 2,4-dinitrophenylhydrazones. Incubation of these microsomes with 12 mM NMAA yielded mean values of 0.64 nmol formaldehyde ("demethylation"), 0.21 nmol pentaldehyde ("depentylation"), and 0.56 nmol total hydroxy-NMAAs/min/mg protein. Metabolite yields under various conditions were determined, including a demonstration that carbon monoxide inhibited 81% of NMAA demethylation, indicating that cytochrome P-450 enzymes were involved. We also examined N-nitrosodimethylamine (NDMA) demethylation by the same microsomes. Rat esophageal microsomes dealkylated NMAA and NDMA similarly to human esophageal microsomes, but with 2-6 times and twice the activity, respectively. Human and rat esophageal microsomes demethylated 6 mM NMAA 18-20 times as rapidly as they demethylated 5 mM NDMA, in contrast to liver microsomes of these species, which demethylated 6 mM NMAA only 0.9-1.4 times as rapidly as they demethylated 5 mM NDMA. However, liver microsomes of both species were more active than esophageal microsomes for NMAA depentylation. The occurrence of NMAA demethylation and (to a lesser extent) depentylation with both human and rat esophageal microsomes is important because these are the activating reactions, and suggests that both human and rat esophagus contain P-450 isozymes that specifically dealkylate asymmetric dialkylnitrosamines.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Carcinogens / metabolism*
  • Cytochrome P-450 Enzyme System / physiology
  • Dealkylation
  • Esophagus / metabolism*
  • Humans
  • Male
  • Microsomes / metabolism*
  • Nitrosamines / metabolism*
  • Rats
  • Rats, Inbred Strains

Substances

  • Carcinogens
  • Nitrosamines
  • N-amyl-N-methylnitrosamine
  • Cytochrome P-450 Enzyme System