Superoxide dismutases (SODs) are important antioxidant enzymes responsible for the elimination of superoxide radical (O(2)(-)). The manganese-containing SOD (Mn-SOD) has been suggested to have tumor suppressor function and is located in the mitochondria where the majority of O(2)(-) is generated during respiration. Although increased reactive oxygen species (ROS) in cancer cells has long been recognized, the expression of Mn-SOD in cancer and its role in cancer development remain elusive. The present study used a human tissue microarray to analyze Mn-SOD expression in primary ovarian cancer tissues, benign ovarian lesions, and normal ovary epithelium. Significantly higher levels of Mn-SOD protein expression were detected in the malignant tissues compared with normal tissues (p < 0.05). In experimental systems, suppression of Mn-SOD expression by small interfering RNA caused a 70% increase of superoxide in ovarian cancer cells, leading to stimulation of cell proliferation in vitro and more aggressive tumor growth in vivo. Furthermore, stimulation of mitochondrial O(2)(-) production induced an increase of Mn-SOD expression. Our findings suggest that the increase in Mn-SOD expression in ovarian cancer is a cellular response to intrinsic ROS stress and that scavenging of superoxide by SOD may alleviate the ROS stress and thus reduce the simulating effect of ROS on cell growth.