Background: The daily pattern of nursing of the rabbit pup by the doe is the most important event in the day for the newborn and is neatly anticipated by them. Such anticipation presumably needs a close correlation with changes in hormones that will allow the pups to develop an appropriate behavior. Although a number of circadian functions have been examined in newborn rabbits, there is no information on 24-h pattern of gonadotropin release or on possible sex-related differences in gonadotropin or prolactin (PRL) release of pups. This study examined the 24-h changes of plasma luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) in 11 days old suckling female and male rabbits left with the mother or after short-term (i.e., 48 h) doe-litter separation.
Methods: Animals were kept under controlled light-dark cycles (16 h-8 h; lights on at 08:00 h). On day 9 post partum, groups of 6-7 female or male rabbit pups were separated from their mothers starting at 6 different time intervals in the 24 h cycle. Pups were killed 48 h after separation. At each time interval groups of male or female pups that stayed with the mother were killed as controls. Plasma, LH, FSH and PRL levels were measured by specific radioimmunoassays.
Results: In pups kept with their mother plasma FSH and LH maxima occurred at the first and second part of the light phase (at 13:00 and 17:00-21:00 h, respectively) (females) or as two peaks for each of the hormones (at 13:00 and 01:00 h) (males). PRL release was similar in female and male rabbit pups kept with their mother, showing a 24-h pattern with two peaks, at 13:00 and 01:00 h, respectively. Mean 24-h values of gonadotropins and PRL did not differ between sexes. Isolation of pups for 48 h augmented circulating gonadotropin and PRL levels and distorted hormone 24-h pattern to a similar extent in both sexes.
Conclusion: Significant sex differences in 24-h changes in LH and FSH, but not in PRL, release occurred in rabbit pups kept with the doe. Separation of newborn pups from their mother augmented circulating gonadotropin and PRL levels and disrupted 24-h rhythmicity of gonadotropin and PRL release similarly in both sexes. The effect of pups' isolation can be attributed either to a modification of the circadian pacemaker or to a masking effect on some of its output overt rhythms.