Telomerase expression is sufficient for chromosomal integrity in cells lacking p53 dependent G1 checkpoint function

J Carcinog. 2005 Oct 6:4:18. doi: 10.1186/1477-3163-4-18.

Abstract

Background: Secondary cultures of human fibroblasts display a finite lifespan ending at senescence. Loss of p53 function by mutation or viral oncogene expression bypasses senescence, allowing cell division to continue for an additional 10-20 doublings. During this time chromosomal aberrations seen in mitotic cells increase while DNA damage and decatenation checkpoint functions in G2 cells decrease.

Methods: To explore this complex interplay between chromosomal instability and checkpoint dysfunction, human fibroblast lines were derived that expressed HPV16E6 oncoprotein or dominant-negative alleles of p53 (A143V and H179Q) with or without the catalytic subunit of telomerase.

Results: Cells with normal p53 function displayed 86-93% G1 arrest after exposure to 1.5 Gy ionizing radiation (IR). Expression of HPV16E6 or p53-H179Q severely attenuated G1 checkpoint function (3-20% arrest) while p53-A143V expression induced intermediate attenuation (55-57% arrest) irrespective of telomerase expression. All cell lines, regardless of telomerase expression or p53 status, exhibited a normal DNA damage G2 checkpoint response following exposure to 1.5 Gy IR prior to the senescence checkpoint. As telomerase-negative cells bypassed senescence, the frequencies of chromosomal aberrations increased generally congruent with attenuation of G2 checkpoint function. Telomerase expression allowed cells with defective p53 function to grow >175 doublings without chromosomal aberrations or attenuation of G2 checkpoint function.

Conclusion: Thus, chromosomal instability in cells with defective p53 function appears to depend upon telomere erosion not loss of the DNA damage induced G1 checkpoint.