TLRs have been studied extensively in pathogen-mediated host responses. We use a murine model of lethal oxidant-mediated injury to demonstrate for the first time that mammalian TLR4 is required for survival and lung integrity. Administering high levels of inspired oxygen, or hyperoxia, is commonly used as a life-sustaining measure in critically ill patients. However, prolonged exposures can lead to respiratory failure and death. TLR4-deficient mice exhibited increased mortality and lung injury during hyperoxia. The enhanced susceptibility of TLR4-deficient mice to hyperoxia was associated with an inability to up-regulate Bcl-2 and phospho-Akt. Restoration of Bcl-2 and phospho-Akt levels by the exogenous transfer of the antioxidant gene heme oxygenase-1 markedly attenuated hyperoxia-induced injury, apoptosis, and mortality in TLR4-deficient mice. Taken together, our results suggest a protective role of TLR4 in oxidant-mediated injury, providing novel mechanistic links among innate immunity, oxidant stress, and apoptosis.