Objective: To evaluate the ability of a lead management device to reduce magnetic resonance imaging (MRI)-related heating of deep brain stimulation (DBS) leads and thereby to decrease the risks of exposing patients with these implants to MRI procedures.
Methods: Experiments were performed using the Activa series (Medtronic, Inc., Minneapolis, MN) DBS systems in an in vitro, gelled-saline head and torso phantom. Temperature change was recorded using fluoroptic thermometry during MRI performed using a transmit-and-receive radiofrequency body coil at 1.5 T and a transmit-and-receive radiofrequency head coil at 3 T. A cranial model placed in the phantom was used to test a custom-designed burr hole device that permitted the placement of small-diameter, concentric loops around the burr hole at the DBS lead as it exited the cranium.
Results: A total of 41 scans were performed, with absolute temperature changes ranging from 0.8 to 10.3 degrees C. Depending on the MRI system tested and the side of the phantom on which the hardware was placed, loop placement resulted in reductions in temperature rise of 41 to 74%. The effect was linearly related to the number of loops formed (P < 0.01) over the range tested (0-2.75 loops).
Conclusion: Small, concentric loops placed around the burr hole seem to reduce MRI-related heating for these implants. Although the mechanism is still not fully understood, a device such as that used in the present study could permit a wider range of clinical scanning sequences to be used at 1.5 and 3 T in patients with DBS implants, in addition to increasing the margin of safety for the patient.