Hyaluronan (HA), is a high molecular mass extracellular matrix constituting connective tissue and plays a critical role in not only homeostasis but also inflammatory and wound-healing responses. In this study, we investigated the effect of fibroblast growth factor (FGF)-2 on the production of HA by human dental pulp cells (HDPC). An inhibition binding-protein assay showed that FGF-2 increased HA production by HDPC. In addition, expression of mRNA of hyaluronan synthase (HAS) 1 and HAS 2, both of which are related to the production of high molecular mass of HA, but not HAS 3, was enhanced in FGF-2-stimulated HDPC. These results provide new evidence for the involvement of FGF-2 in the regulation of HA production by HDPC possibly through HAS 1 and HAS 2.