Methamphetamine is the fourth most frequently reported compound associated with drug abuse on admission of patients to treatment centres after cocaine, heroin and marijuana. It is metabolized in the organism with a reaction that is catalyzed by cytochrome P450, mainly by the CYP2D and CYP3A subfamily, 4-hydroxyamphetamine and amphetamine being dominant metabolites. The present pharmacokinetic study was undertaken to investigate the possible influence of methamphetamine (10 mg/kg, i.p., once daily for six days) on the pharmacokinetics of dextromethorphane as a model substrate for rat cytochrome P-4502D2 and midazolam as a model substrate for CYP3A1/2. Animals received a single injection of dextromethorphane (10 mg/kg) or midazolam (5 mg/kg) in the tail vein 24 h after the last dose of methamphetamine or administration of placebo. The results of pharmacokinetic analysis showed a significantly increased rate of dextrorphane and 3-hydroxymorphinan formation, and a marked stimulatory effect of methamphetamine on CYP2D2 metabolic activity. Similarly, the kinetics of midazolam's metabolic conversion to hydroxy derivates of midazolam indicated a significant increase in CYP3A1/2 activity. The results showed that the administration of methamphetamine significantly stimulated the metabolic activity of CYP2D2 as well as that of CYP3A1/2. With regard to the high level of homology between human and rat CYP isoforms studied, the results may have a clinical impact on future pharmacotherapy for methamphetamine abuse.