Cerebral metabolism (CMR for glucose or oxygen) and blood flow (CBF) have been reported to be closely correlated in healthy controls. Altered relationships between CMR and CBF have been reported in some brain disease states, but not others. This study examined relationships between global and regional CMRglu vs. CBF in controls and medication-free primary affective disorder patients. Nine bipolars, eight unipolars, and nine healthy controls had [15O]-water positron emission tomography (PET) scans at rest, and [18F]-fluorodeoxyglucose PET scans during an auditory continuous performance task. Patients had [15O]-water and FDG PET scans in tandem the same day; controls had an average of 45+/-27 days between scans. Maps of regional coupling were constructed for each subject group. In controls and bipolars, global and virtually all regional correlation coefficients for CMRglu and CBF were positive, albeit more robustly so in controls. However, correlative relationships in unipolars were qualitatively different, such that global and most regional measures of flow and metabolism were not positively related. Unipolars had significantly fewer positive regional correlation coefficients than healthy controls and bipolars. These were significantly different from controls in orbital cortex, anterior cingulate, posterior cingulate, and posterior temporal cortex, and different from bipolars in pregenual anterior cingulate. In unipolars, the degree of flow-metabolism uncoupling was inversely correlated with Hamilton depression scores, indicating the severity of uncoupling was directly related to the severity of depression. These preliminary data suggest abnormal relationships between cerebral metabolism and blood flow globally and regionally in patients with unipolar depression that warrant replication and extension to potential pathophysiological implications.